The realization space is [1 x1 - 1 1 x1 - 1 1 0 0 x1^2 - 2*x1 + 1 x1^3 - 3*x1^2 + 3*x1 - 1 x1^2 - 2*x1 + 1 0] [1 x1 0 0 x1 1 0 x1^2 - 2*x1 + 1 x1^3 - 2*x1^2 + x1 x1^3 - 2*x1^2 + x1 x1^2 - 2*x1 + 1] [1 x1 0 x1 0 0 1 x1 x1 x1 x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^11 - 11*x1^10 + 49*x1^9 - 114*x1^8 + 149*x1^7 - 109*x1^6 + 41*x1^5 - 6*x1^4) avoiding the zero loci of the polynomials RingElem[2*x1^2 - 4*x1 + 1, x1 - 1, x1, x1 - 2, 2*x1 - 1, 2, x1^2 - 3*x1 + 1, x1^3 - 3*x1^2 + 2*x1 - 1, x1^3 - 4*x1^2 + 5*x1 - 1]